Random Forest
- niko
- 3 sept. 2018
- 1 min de lecture

CODE PYTHON:
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
#DATAS from sklearn.datasets import load_digits digits = load_digits() X, y = digits.data, digits.target
## mise à l'échelle : normalisation from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_std = scaler.fit_transform(X)
#stratégie de cross-validation
cv = ShuffleSplit(n_splits=30, test_size=0.2)
#initialisation du classifieur
clf_forest = RandomForestClassifier()
n_arbres_grid = [1, 5, 10, 20, 50, 100] parameters = {'n_estimators': n_arbres_grid}
clf_forest_grid = GridSearchCV(clf_forest, parameters, cv=cv) clf_forest_grid.fit(X_std, y)
plt.plot(n_arbres_grid, clf_forest_grid.cv_results_['mean_test_score']) print('Meilleure valeur du paramètre: ', clf_forest_grid.best_params_)





Commentaires